

Thermochimica Acta 287 (1996) 25-34

thermochimica acta

# Excess isentropic compressibilities of halohydrocarbon + butanol mixture at 298.15 K

H. Artigas, A.M. Mainar, M. Domínguez, P. Cea, C. Lafuente \*

Departemento de Química Orgánica – Química Física, Facultad de Ciencias, Universidad de Zaragoza. Ciudad Universitaria, Zaragoza 50009, Spain

Received 30 January 1996; accepted 20 March 1996

#### Abstract

Isentropic compressibilities,  $\kappa_s$ , and excess isentropic compressibilities,  $\kappa_s^E$ , of various halohydrocarbons, namely, chlorocyclohexane, chlorobenzene, bromocyclohexane and bromobenzene in isomeric butanols were calculated from density and speed of sound measurements at 298.15 K. Excess isentropic compressibilities were fitted to the Redlich–Kister equation. Mixtures containing an aromatic halohydrocarbons show a decrease in the  $\kappa_s^E$  values with respect to those containing the corresponding halocycloalkane. The same effect can be observed when the chlorine atom is substituted by bromine.

Keywords: Isentropic compressibilities; Halohydrocarbons; Isomeric butanols

## 1. Introduction

This paper is a continuation of our work on the determination of isentropic compressibilities of binary mixtures of haloalkanes with isomeric butanols [1]. We present here density and speed of sound measurements of chlorocyclohexane, chlorobenzene, bromocyclohexane and bromobenzene + isomeric butanols at 298.15 K and their calculated isentropic compressibility functions. A knowledge of these properties helps in understanding molecular interactions in the liquid mixtures. Our interest lies in studying how both the change from cyclic alkane to the corresponding aromatic hydrocarbon and the substitution of the chlorine atoms by a bromine affect the compressibility behaviour of these mixtures.

<sup>\*</sup> Corresponding author.

<sup>0040-6031/96/\$15.00</sup> C 1996 – Elsevier Science B.V. All rights reserved P11: S0040-6031(96)02987-5

## 2. Experimental

## 2.1. Materials

The liquids used were 1-butanol (better than 99.8 mol%), 2-methyl-1-propanol and 2-methyl-2-propanol (better than 99.5 mol%), and 2-butanol and chlorocyclohexane (better than 99 mol%), obtained from Aldrich, together with chlorobenzene and bromobenzene (better than 99.5 mol%), and bromocyclohexane (better than 99 mol%) provided by Fluka. The purity of the chemicals was checked by GLC and was considered sufficient. The isomeric butanols were carefully dried with Merck molecular sieves (type 0.3 nm).

#### 2.2. Measurements

The density,  $\rho$ , and speed of sound, u, of pure liquids and mixtures were measured with an Anton Paar DSA-48 density and sound analyser. Calibration of the apparatus was carried out with deionized doubly-distilled water and dry air. The uncertainty of the density measurements was  $\pm 1 \times 10^{-4}$  g cm<sup>-3</sup> and of the speed of sound measurements,  $\pm 0.1$  m s<sup>-1</sup>. Experimental and literature [2] values of  $\rho$  and experimental values of u for pure liquids are listed in Table 1.

#### 3. Results and discussion

Densities and speeds of sound of the mixtures are given in Table 2. Assuming that ultrasonic absorption is negligible, isentropic compressibilities can be obtained from the densities and speeds of sound using the relation

$$\kappa_s = (\rho u^2)^{-1} \tag{1}$$

Table 1 Physical properties of pure compounds at T = 298.15 K

| Component           | $ ho/{ m g~cm^{-3}}$ |          | ums <sup>-1</sup> | $\kappa_{\rm s}$<br>T Pa <sup>-1</sup> | α<br>k K <sup>- 1</sup> | $C_{p,m}$<br>J mol <sup>-1</sup> K <sup>-1</sup> |
|---------------------|----------------------|----------|-------------------|----------------------------------------|-------------------------|--------------------------------------------------|
|                     | Exp <sub>tl</sub>    | Lit.     |                   |                                        |                         |                                                  |
| Chlorocyclohexane   | 0.9934               | _        | 1301.0            | 594.7                                  | 0.975                   | 178.6 <sup>b</sup>                               |
| Chlorobenzene       | 1.1011               | 1.1009ª  | 1267.8            | 565.0                                  | 0.981                   | 150.1°                                           |
| Bromocyclohexane    | 1.3262               | _        | 1183.0            | 538.8                                  | 0.913                   | 182.1 <sup>d</sup>                               |
| Bromobenzene        | 1.4885               | 1.48820ª | 1153.3            | 505.1                                  | 0.900                   | 154.3°                                           |
| 1-Butanol           | 0.8060               | 0.80575ª | 1239.6            | 807.4                                  | 0.928                   | 177. <b>2</b> °                                  |
| 2-Butanol           | 0.8024               | 0.80241ª | 1212.0            | 848.4                                  | 1.059                   | 196.9°                                           |
| 2-Methyl-1-propanol | 0.7978               | 0.7978ª  | 1188.0            | 888.1                                  | 0.978                   | 181.5°                                           |
| 2-Methyl-2-Propanol | 0.7810               | 0.7812   | 1121.5            | 1018.0                                 | 1.387                   | 218.6°                                           |

<sup>a</sup> Ref. [2]. <sup>b</sup> Ref: [4]. <sup>c</sup> Ref. [5]. <sup>d</sup> Ref. [6].

Excess isentropic compressibilities were evaluated, according to Benson and Kiyohara [3], as follows

$$\kappa_s^{\rm E} = \kappa_{\rm s} - \kappa_{\rm s}^{\rm id} \tag{2}$$

$$\kappa_{s}^{id} = \sum_{i} \phi_{i} \{ \kappa_{s,i} + TV_{i}(\alpha_{i})^{2} / C_{p,i} \} - T(\sum_{i} x_{i} V_{i}) (\sum_{i} \phi_{i} \alpha_{i})^{2} / (\sum_{i} x_{i} C_{p,i})$$
(3)

where  $\phi_i$  is the volume fraction of component *i* in the mixture referred to the unmixed state,  $x_i$  is the corresponding mole fraction, *T* is the temperature, and  $\kappa_{s,i}$ ,  $V_i$ ,  $\alpha_i$  and  $C_{p,i}$  are respectively the isentropic compressibility, molar volume, isobaric thermal expansivity, and molar heat capacity of component *i*. Experimental isentropic compressibilities and isobaric thermal expansivities along with literature molar heat capacities [4–6] are collected in Table 1 for pure compounds.

The estimated quantities  $\kappa_s$  and  $\kappa_s^E$  are given in Table 2, and  $\kappa_s^E$  values are plotted in Figs. 1–4.

Table 2.

Experimental densities,  $\rho$ , and speeds of sound, u, calculated isentropic compressibilities,  $\kappa_s$ , and excess isentropic compressibilities,  $\kappa_s^E$ , at T = 298.15 K

| <i>x</i> <sub>1</sub> | $\rho$<br>g cm <sup>-3</sup> | <i>u</i><br>m s <sup>-1</sup> | $\kappa_s$<br>T Pa <sup>-1</sup> | κ <sup>E</sup><br>Τ Pa <sup>-ι</sup> | <i>x</i> <sub>1</sub>                   | $\frac{ ho}{ m g} m cm^{-3}$ | u m s <sup>-1</sup> | κ <sub>s</sub><br>Τ Pa <sup>-1</sup> | κ <sup>E</sup><br>T Pa <sup>-1</sup> |
|-----------------------|------------------------------|-------------------------------|----------------------------------|--------------------------------------|-----------------------------------------|------------------------------|---------------------|--------------------------------------|--------------------------------------|
|                       |                              |                               | Chlor                            | ocyclohexa                           | 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = | butanol(2)                   |                     |                                      |                                      |
| 0.0402                | 0.8154                       | 1242.2                        | 794.8                            | - 2.3                                | 0.5947                                  | 0.9278                       | 1266.2              | 672.3                                | 0.9                                  |
| 0.0971                | 0.8287                       | 1245.2                        | 778.3                            | - 4.5                                | 0.6968                                  | 0.9450                       | 1271.8              | 654.2                                | 3.2                                  |
| 0.1985                | 0.8512                       | 1249.7                        | 752.2                            | -6.0                                 | 0.8012                                  | 0.9621                       | 1278.6              | 635.8                                | 4.8                                  |
| 0.2999                | 0.8724                       | 1253.8                        | 729.2                            | - 5.5                                | 0.8948                                  | 0.9768                       | 1287.3              | 617.8                                | 4.2                                  |
| 0.4009                | 0.8921                       | 1258.0                        | 708.3                            | - 3.8                                | 0.9440                                  | 0.9845                       | 1292.9              | 607.7                                | 2.9                                  |
| 0.4962                | 0.9100                       | 1262.0                        | 690.0                            | - 1.7                                |                                         |                              |                     |                                      |                                      |
|                       |                              |                               | Chlor                            | ocyclohexa                           | ne(1) + 2-                              | butanol(2)                   |                     |                                      |                                      |
| 0.0399                | 0.8120                       | 1215.0                        | 834.2                            | -1.8                                 | 0.5968                                  | 0.9250                       | 1254.0              | 687.5                                | 2.7                                  |
| 0.1027                | 0.8264                       | 1219.4                        | 813.8                            | -3.2                                 | 0.6954                                  | 0.9423                       | 1262.7              | 665.6                                | 4.1                                  |
| 0.2045                | 0.8487                       | 1226.1                        | 783.8                            | - 3.5                                | 0.7966                                  | 0.9593                       | 1272.7              | 643.6                                | 5.0                                  |
| 0.2975                | 0.8680                       | 1232.1                        | 758.9                            | -2.5                                 | 0.8910                                  | 0.9750                       | 1284.1              | 622.0                                | 4.2                                  |
| 0.3991                | 0.8882                       | 1239.0                        | 733.4                            | - 0.9                                | 0.9475                                  | 0.9843                       | 1292.3              | 608.3                                | 2.6                                  |
| 0.4960                | 0.9067                       | 1246.0                        | 710.4                            | 0.8                                  |                                         |                              |                     |                                      |                                      |
|                       |                              | •                             | Chlorocyclo                      | hexane(1)                            | + 2-methy                               | /l-1-propan                  | ol(2)               |                                      |                                      |
| 0.0349                | 0.8066                       | 1193.0                        | 871.1                            | - 4.5                                | 0.4982                                  | 0.9073                       | 1242.3              | 714.2                                | - 12.4                               |
| 0.1017                | 0.8230                       | 1201.8                        | 841.3                            | - 10.8                               | 0.5959                                  | 0.9252                       | 1251.2              | 690.4                                | - 8.4                                |
| 0.2014                | 0.8461                       | 1213.3                        | 802.9                            | -15.5                                | 0.6987                                  | 0.9434                       | 1261.1              | 666.5                                | - 4.3                                |
| 0.2961                | 0.8667                       | 1223.2                        | 771.1                            | - 16.6                               | 0.8045                                  | 0.9615                       | 1272.6              | 642.2                                | -0.9                                 |
| 0.4027                | 0.8885                       | 1233.3                        | 740.0                            | - 14.9                               | 0.8965                                  | 0.9764                       | 1284.1              | 621.1                                | 1.2                                  |
|                       |                              | •                             | Chlorocyclo                      | hexane(1)                            | + 2-methy                               | /l-2-propan                  | ol(2)               |                                      |                                      |
| 0.1014                | 0.8056                       | 1136.6                        | 960.9                            | - 4.6                                | 0.5905                                  | 0.9151                       | 1222.5              | 731.2                                | - 14.3                               |
| 0.1942                | 0.8279                       | 1151.8                        | 910.5                            | <b>- 9</b> .3                        | 0.6869                                  | 0.9340                       | 1239.5              | 696.9                                | -10.7                                |
| 0.3029                | 0.8532                       | 1170.9                        | 854.9                            | - 13.8                               | 0.7947                                  | 0.9547                       | 1259.0              | 660.8                                | - 6.3                                |
| 0.3918                | 0.8731                       | 1186.9                        | 813.0                            | - 15.8                               | 0.8932                                  | 0.9730                       | 1277.7              | 629.5                                | -2.1                                 |
| 0.4883                | 0.8939                       | 1204.2                        | 771.5                            | - 15.9                               | 0.9574                                  | 0.9849                       | 1291.4              | 608.8                                | -0.4                                 |

| <i>x</i> <sub>1</sub> | $\rho$<br>g cm <sup>-3</sup> | u m s <sup>-1</sup> | $\kappa_s$<br>T Pa <sup>-1</sup> | $\kappa_s^{\rm E}$<br>T Pa <sup>-1</sup> | <i>x</i> <sub>1</sub> | $\rho$<br>g cm <sup>-3</sup> | <i>u</i><br>m s <sup>-1</sup> | $rac{\kappa_s}{T}$ Pa <sup>-1</sup> | $\kappa_s^{\rm E}$<br>T Pa <sup>-1</sup> |
|-----------------------|------------------------------|---------------------|----------------------------------|------------------------------------------|-----------------------|------------------------------|-------------------------------|-------------------------------------|------------------------------------------|
|                       |                              |                     | Chl                              | orobenzen                                | e(1) + 1-bı           | itanol(2)                    |                               |                                     |                                          |
| 0.0312                | 0.8163                       | 1240.5              | 796.1                            | - 3.5                                    | 0.6080                | 0.9930                       | 1244.5                        | 650.2                               | - 8.0                                    |
| 0.0937                | 0.8370                       | 1241.6              | 775.0                            | - 8.9                                    | 0.6977                | 1.0185                       | 1245.4                        | 633.0                               | - 3.7                                    |
| 0.1999                | 0.8710                       | 1242.7              | 743.4                            | -14.0                                    | 0.8041                | 1.0476                       | 1249.1                        | 611.8                               | 0.4                                      |
| 0.3029                | 0.9034                       | 1242.6              | 716.9                            | - 15.2                                   | 0.8984                | 1.0732                       | 1255.2                        | 591.4                               | 2.4                                      |
| 0.4029                | 0.9333                       | 1242.8              | 693.7                            | - 14.0                                   | 0.9538                | 1.0882                       | 1261.0                        | 577.9                               | 2.0                                      |
| 0.5022                | 0.9632                       | 1243.0              | 672.0                            | - 11.7                                   |                       |                              |                               |                                     |                                          |
|                       |                              |                     | Chl                              | orobenzen                                | e(1) + 2-bı           | itanol(2)                    |                               |                                     |                                          |
| 0.0353                | 0.8141                       | 1213.3              | 834.4                            | - 3.4                                    | 0.4989                | 0.9576                       | 1226.6                        | 694.1                               | - 9.6                                    |
| 0.0946                | 0.8334                       | 1215.2              | 812.6                            | - 7.7                                    | 0.5982                | 0.9865                       | 1231.0                        | 668.9                               | - 6.9                                    |
| 0.1994                | 0.8668                       | 1217.9              | 777.8                            | -11.7                                    | 0.7036                | 1.0167                       | 1236.9                        | 642.9                               | - 3.6                                    |
| 0.3029                | 0.8989                       | 1220.4              | 746.9                            | - 12.6                                   | 0.7985                | 1.0436                       | 1243.9                        | 619.3                               | - 1.0                                    |
| 0.4008                | 0.9283                       | 1223.1              | 720.1                            | - 11.4                                   | 0.8992                | 1.0718                       | 1254.0                        | 593.3                               | 0.7                                      |
|                       |                              |                     | Chlorobe                         | nzene(1) +                               | 2-methyl-             | 1-propanol                   | (2)                           |                                     |                                          |
| 0.0339                | 0.8094                       | 1191.2              | 870.7                            | - 5.9                                    | 0.4992                | 0.9566                       | 1219.5                        | 702.9                               | 19.8                                     |
| 0.0951                | 0.8300                       | 1196.1              | 842.1                            | -13.7                                    | 0.6063                | 0.9885                       | 1225.9                        | 673.2                               | - 15.2                                   |
| 0.1982                | 0.8637                       | 1203.2              | 799.8                            | -21.5                                    | 0.6931                | 1.0138                       | 1231.7                        | 650.2                               | - 10.6                                   |
| 0.2982                | 0.8953                       | 1208.9              | 764.3                            | - 23.9                                   | 0.7972                | 1.0433                       | 1240.1                        | 623.3                               | - 4.8                                    |
| 0.4010                | 0.9273                       | 1214.3              | 731.4                            | - 23.1                                   | 0.8927                | 1.0703                       | 1250.7                        | 597.3                               | - 1.0                                    |
|                       |                              |                     | Chlorobe                         | nzene(1) +                               | 2-methyl-             | 2-propanol                   | (2)                           |                                     |                                          |
| 0.0559                | 0.7989                       | 1125.6              | 988.0                            | - 3.0                                    | 0.5943                | 0.9737                       | 1197.3                        | 716.4                               | - 24.9                                   |
| 0.0904                | 0.8103                       | 1128.8              | 968.5                            | - 5.8                                    | 0 7002                | 1.0069                       | 1213.6                        | 674.3                               | -20.1                                    |
| 0 1953                | 0.8450                       | 1140.7              | 909.5                            | - 15.0                                   | 0.7894                | 1.0347                       | 1227.9                        | 641.0                               | - 14.4                                   |
| 0.3016                | 0.8799                       | 1154.9              | 8521                             | - 22.6                                   | 0.8870                | 1.0649                       | 1244.8                        | 606.0                               | - 7.2                                    |
| 0.2003                | 0.0116                       | 1169.2              | 802.5                            | -26.6                                    | 0.9500                | 1.0846                       | 1257.5                        | 583.1                               | - 3.2                                    |
| 0.5010                | 0.9440                       | 1183.9              | 755.8                            | - 27.4                                   | 012000                | 10000                        |                               | ••••                                |                                          |
|                       |                              |                     | Brom                             | ocyclohexa                               | ane(1) + 1-           | butanol(2)                   |                               |                                     |                                          |
| 0.0493                | 0.8394                       | 1231.3              | 785.8                            | -4.7                                     | 0.5966                | 1.1500                       | 1178.7                        | 625.9                               | - 5.3                                    |
| 0.0986                | 0.8720                       | 1223.3              | 766 3                            | -77                                      | 0.6993                | 1 1984                       | 1175.6                        | 603.8                               | -22                                      |
| 0.2017                | 0.9369                       | 12094               | 729.7                            | - 11.5                                   | 0 7942                | 1 2405                       | 1174.7                        | 584.2                               | 0.4                                      |
| 0 3044                | 0.9975                       | 1198.2              | 698 3                            | -120                                     | 0.8877                | 1.2799                       | 1176.4                        | 564.6                               | 1.8                                      |
| 0.3950                | 1 0474                       | 1190.2              | 673.8                            | -10.7                                    | 0.9476                | 1 3046                       | 1179.2                        | 551.2                               | 1.4                                      |
| 0.5009                | 1.1029                       | 1183.2              | 647.7                            | - 8.1                                    | 0.9170                | 1.5010                       |                               | 00112                               |                                          |
|                       |                              |                     | Brom                             | ocyclohexa                               | ane(1) + 2-           | butanol(2)                   |                               |                                     |                                          |
| 0.0995                | 0.8688                       | 1197.7              | 802.4                            | - 7.1                                    | 0.5866                | 1.1418                       | 1167.6                        | 642.4                               | - 5.3                                    |
| 0.2017                | 0.9327                       | 1186.6              | 761.5                            | -10.3                                    | 0.7048                | 1.1972                       | 1168.2                        | 612.1                               | - 2.3                                    |
| 0.3018                | 0.9914                       | 1178.4              | 7264                             | - 10.6                                   | 0.7857                | 1.2344                       | 1169.5                        | 592.3                               | -0.3                                     |
| 0.4019                | 1.0471                       | 1172.7              | 694.4                            | 9.6                                      | 0.8883                | 1.2788                       | 1174.0                        | 567.4                               | 1.2                                      |
| 0.5018                | 1.0995                       | 1169.0              | 665.5                            | - 7.4                                    | 0.9517                | 1.3054                       | 1178.6                        | 551.5                               | 1.0                                      |
|                       |                              |                     | Bromocyclo                       | hexane(1)                                | + 2-methy             | yl-1-propan                  | ol(2)                         |                                     |                                          |
| 0.0477                | 0.8309                       | 1184.4              | 857.9                            | - 8.8                                    | 0.5917                | 1.1446                       | 1165.0                        | 643.7                               | - 16.4                                   |
| 0.0980                | 0.8647                       | 1180.9              | 829.3                            | - 15.6                                   | 0.6975                | 1.1949                       | 1166.1                        | 615.5                               | - 10.9                                   |
| 0.1983                | 0.9286                       | 1174.9              | 780.1                            | -23.0                                    | 0.7869                | 1.2357                       | 1168.4                        | 592.8                               | - 6.4                                    |
| 0.3027                | 0.9910                       | 1170.2              | 736.9                            | - 25.3                                   | 0.8860                | 1.2783                       | 1172.9                        | 568.7                               | -1.7                                     |
|                       |                              |                     |                                  |                                          | -                     |                              |                               |                                     |                                          |

Table 2 (Continued)

|        | g cm <sup>- 3</sup> | $m s^{-1}$ | $\kappa_s$ T Pa <sup>-1</sup> | κ <sub>s</sub> <sup>E</sup><br>Τ Pa <sup>-1</sup> | <i>x</i> <sub>1</sub> | hog cm <sup>- 3</sup> | $\frac{u}{m s^{-1}}$ | $\frac{\kappa_s}{T}$ Pa <sup>-1</sup> | $\kappa_s^{\mathbf{E}}$<br>T Pa <sup>-1</sup> |
|--------|---------------------|------------|-------------------------------|---------------------------------------------------|-----------------------|-----------------------|----------------------|---------------------------------------|-----------------------------------------------|
| 0.4015 | 1.0463              | 1167.1     | 701.2                         | - 23.8                                            | 0.9454                | 1.3032                | 1177.9               | 553.1                                 | - 0.6                                         |
| 0.4948 | 1.0957              | 1165.4     | 672.0                         | - 20.6                                            |                       |                       |                      |                                       |                                               |
|        |                     | ]          | Bromocyclo                    | phexane(1)                                        | + 2-methy             | /l-2-propan           | ol(2)                |                                       |                                               |
| 0.0552 | 0.8179              | 1118.4     | 977.5                         | - 6.8                                             | 0.5905                | 1.1326                | 1139.8               | 679.6                                 | - 26.3                                        |
| 0.0981 | 0.8465              | 1117.1     | 946.6                         | - 12.2                                            | 0.6860                | 1.1808                | 1147.9               | 642.7                                 | - 21.2                                        |
| 0.1988 | 0.9105              | 1117.6     | 879.3                         | - 22.1                                            | 0.7686                | 1.2204                | 1155.5               | 613.7                                 | 15.5                                          |
| 0.2934 | 0.9687              | 1120.7     | 821.9                         | -28.5                                             | 0.8729                | 1.2686                | 1166.3               | 579.5                                 | - 7.7                                         |
| 0.3942 | 1.0273              | 1126.0     | 767.8                         | - 31.1                                            | 0.9282                | 1.2934                | 1172.8               | 562.1                                 | - 3.7                                         |
| 0.4871 | 1.0784              | 1132.0     | 723.6                         | - 30.0                                            |                       |                       |                      |                                       |                                               |
|        |                     |            | Bro                           | mobenzene                                         | e(1) + 1 - bu         | itanol(2)             |                      |                                       |                                               |
| 0.0442 | 0.8405              | 1230.9     | 785.3                         | - 7.3                                             | 0.5969                | 1.2361                | 1157.3               | 604.0                                 | - 15.3                                        |
| 0.0951 | 0.8801              | 1220.9     | 762.3                         | -13.4                                             | 0.7053                | 1.3067                | 1150.9               | 577.8                                 | - 9.9                                         |
| 0.2044 | 0.9626              | 1202.2     | 718.8                         | -21.3                                             | 0.7926                | 1.3617                | 1147.9               | 557.3                                 | - 5.4                                         |
| 0.3034 | 1.0349              | 1187.7     | 685.0                         | - 23.6                                            | 0.9015                | 1.4288                | 1147.8               | 531.2                                 | -0.9                                          |
| 0.3965 | 1.1006              | 1176.0     | 657.0                         | - 22.6                                            | 0.9502                | 1.4581                | 1150.3               | 518.3                                 | -0.4                                          |
| 0.4928 | 1.1668              | 1166.0     | 630.4                         | - 19.9                                            |                       |                       |                      |                                       |                                               |
|        |                     |            | Bro                           | mobenzene                                         | e(1) + 2-bu           | itanol(2)             |                      |                                       |                                               |
| 0.0403 | 0.8339              | 1204.6     | 826.4                         | - 6.5                                             | 0.5944                | 1.2297                | 1146.5               | 618.7                                 | - 16.6                                        |
| 0.0943 | 0.8754              | 1195.2     | 799.7                         | - 12.8                                            | 0.6825                | 1.2872                | 1144.1               | 593.5                                 | - 12.6                                        |
| 0.1988 | 0.9537              | 1179.8     | 753.3                         | - 20.4                                            | 0.7966                | 1.3610                | 1143.7               | 561.2                                 | - 7.3                                         |
| 0.2958 | 1.0244              | 1167.9     | 715.7                         | - 22.9                                            | 0.8903                | 1.4199                | 1146.2               | 536.1                                 | - 3.2                                         |
| 0.3967 | 1.0959              | 1158.2     | 680.2                         | - 22.7                                            | 0.9513                | 1.4577                | 1150.2               | 518.5                                 | - 1.6                                         |
| 0.4954 | 1.1638              | 1151.2     | 648.4                         | -20.4                                             |                       |                       |                      |                                       |                                               |
|        |                     |            | Bromobe                       | nzene(1) +                                        | 2-methyl-             | 1-propanol            | (2)                  |                                       |                                               |
| 0.0296 | 0.8213              | 1184.5     | 867.8                         | - 7.7                                             | 0.5942                | 1.2290                | 1141.0               | 625.0                                 | - 25.6                                        |
| 0.1035 | 0.8787              | 1175.6     | 823.5                         | - 20.9                                            | 0.6991                | 1.2984                | 1139.4               | 593.3                                 | - 18.6                                        |
| 0.1996 | 0.9515              | 1165.5     | 773.7                         | - 30.9                                            | 0.8012                | 1.3639                | 1140.4               | 563.8                                 | - 11.1                                        |
| 0.3022 | 1.0263              | 1156.4     | 728.6                         | - 34.6                                            | 0.8952                | 1.4231                | 1144.3               | 536.6                                 | - 4.9                                         |
| 0.3991 | 1.0965              | 1149.4     | 690.3                         | - 34.7                                            | 0.9467                | 1.4551                | 1147.7               | 521.7                                 | -1.8                                          |
| 0.4968 | 1.1636              | 1144.3     | 656.3                         | - 31.0                                            |                       |                       |                      |                                       |                                               |
|        |                     |            | Bromobe                       | nzene(1) +                                        | 2-methyl-             | 2-propanol            | (1)                  |                                       |                                               |
| 0.0487 | 0.8178              | 1115.9     | 982.2                         | - 8.4                                             | 0.5956                | 1.2167                | 1116.6               | 659.2                                 | - 40.4                                        |
| 0.0977 | 0.8553              | 1111.5     | 946.4                         | - 16.5                                            | 0.7126                | 1.2967                | 1124.2               | 610.2                                 | - 31.4                                        |
| 0.1948 | 0.9285              | 1107.1     | 878.7                         | - 30.6                                            | 0.7993                | 1.3553                | 1131.2               | 576.6                                 | - 23.0                                        |
| 0.3038 | 1.0092              | 1106.3     | 809.6                         | - 40.9                                            | 0.9023                | 1.4225                | 1140.9               | 540.1                                 | - 10.6                                        |
| 0.4001 | 1.0792              | 1108.0     | 754.8                         | - 44.9                                            | 0.9380                | 1.4469                | 1145.3               | 526.9                                 | 7.0                                           |
| 0.4974 | 1.1486              | 1111.6     | 704.6                         | - 44.8                                            |                       |                       |                      |                                       |                                               |

The excess isentropic compressibilities were fitted to the Redlich-Kister equation

$$\kappa_s^{\rm E}/T{\rm Pa}^{-1} = x_1(1-x_1)\sum_i A_i(2x_1-1)^i$$
(4)

where  $A_i$  are adjustable parameters determined by least-square optimization. The values of these parameters are given in Table 3 together with the standard deviations.



Fig. 1. Excess isentropic compressibilities of chlorocyclohexane(1) + a butanol(2) at T = 298.15 K:  $\triangle$ , 1-butanol;  $\square$ , 2-butanol;  $\blacktriangle$ , 2-methyl-1-propanol;  $\blacksquare$ , 2-methyl-2-propanol.

| Table 3                                                                                     |
|---------------------------------------------------------------------------------------------|
| Values of parameters $A_i$ for Eq.(4) and standard deviations, $\sigma$ , at $T = 298.15$ K |

|                        | A <sub>0</sub> | <i>A</i> <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | σ   |
|------------------------|----------------|-----------------------|----------------|----------------|-----|
| Chlorocyclohexane(1) + |                |                       |                |                |     |
| 1-butanol(2)           | - 6.2          | 49.8                  | 6.1            | 16.9           | 0.0 |
| 2-butanol(2)           | 3.7            | 36.4                  | 1.7            | 21.4           | 0.1 |
| 2-methyl-1-propanol(2) | - 48.6         | 69.5                  | - 6.9          | 18.9           | 0.2 |
| 2-methyl-2-propanol(2) | - 63.8         | 20.5                  | 43.0           | - 3.5          | 0.1 |
| Chlorobenzene(1) +     |                |                       |                |                |     |
| 1-butanol(2)           | - 47.1         | 62.8                  | 13.2           | 30.5           | 0.2 |
| 2-butanol(2)           | - 38.1         | 49.4                  | - 3.9          | 17.7           | 0.1 |
| 2-methyl-1-propanol(2) | - 79.9         | 78.1                  | - 6.1          | 25.1           | 0.1 |
| 2-methyl-2-propanol(2) | - 109.8        | 19.8                  | 56.5           | - 30.1         | 0.2 |
| Bromocyclohexane(1) +  |                |                       |                |                |     |
| 1-butanol(2)           | - 32.9         | 55.8                  | - 2.5          | 18.1           | 0.1 |
| 2-butanol(2)           | - 30.1         | 46.6                  | - 5.0          | 18.2           | 0.1 |
|                        |                |                       |                |                |     |

| Table 3 (Continued)                                    |                   |                       |                 |                      |                   |  |  |  |
|--------------------------------------------------------|-------------------|-----------------------|-----------------|----------------------|-------------------|--|--|--|
|                                                        | A <sub>0</sub>    | <i>A</i> <sub>1</sub> | A 2             | A <sub>3</sub>       | σ                 |  |  |  |
| 2-methyl-1-propanol(2)<br>2-methyl-2-propanol(2)       | - 82.0<br>- 120.1 | 81.2<br>52.3          | -22.0<br>28.8   | 28.0<br>- 11.0       | 0.2<br>0.3        |  |  |  |
| Bromobenzene(1) +                                      |                   |                       |                 |                      |                   |  |  |  |
| l-butanol(2)<br>2-butanol(2)<br>2-methyl-1-propanol(2) | - 78.4<br>- 80.5  | 76.7<br>65.0          | - 9.2<br>- 16.4 | 19.3<br>11.4<br>29.8 | 0.2<br>0.2<br>0.2 |  |  |  |
| 2-methyl-2-propanol(2)                                 | - 123.4<br>179.1  | 50.0                  | - 23.2<br>33.5  | - 15.9               | 0.2               |  |  |  |



Fig. 2. Excess isentropic compressibilities of chlorobenzene(1) + a butanol(2) at T = 298.15 K:  $\triangle$ , 1-butanol;  $\square$ , 2-butanol;  $\blacktriangle$ , 2-methyl-1-propanol;  $\blacksquare$ , 2-methyl-2-propanol.

Results show that  $\kappa_s^E$  values exhibit an inversion in sign for the mixtures chlorocyclohexane, chlorobenzene and bromocyclohexane with 1-butanol and 2-butanol, and for chlorocyclohexane with 2-methyl-1-propanol. For the remaining mixtures, the  $\kappa_s^E$  values are negative in the whole composition range although the mixture chlorobenzene with 2-methyl-1-propanol has slightly positive  $\kappa_s^E$  values in the region very rich in



Fig. 3. Excess isentropic compressibilities of bromocyclohexane(1) + a butanol(2) at T = 298.15 K:  $\triangle$ , 1-butanol;  $\square$ , 2-butanol;  $\triangle$ , 2-methyl-1-propanol;  $\blacksquare$ , 2-methyl-2-propanol.

the chlorinated compound. For a given halohydrocarbon, similar behaviour can be observed in 1-butanol and 2-butanol on the one hand, and 2-methyl-1-propanol and 2-methyl-2-propanol on the other. Mixtures containing the last two isomeric butanols show more negative  $\kappa_s^{\rm E}$  values. If we now consider an isomeric butanol, it can be pointed out that the mixtures containing the aromatic halohydrocarbon lead to a decrease in the  $\kappa_s^{\rm E}$  values with respect to those containing the corresponding halocycloalkane and the same effect can be observed when the chlorine atom is substituted by a bromine one.

The behaviour of these mixtures can be explained in terms of molecular interactions. According to Fort and Moore [7], excess adiabatic compressibility decreases and becomes increasingly negative as the strength of the interaction between the components increases, due to a closer approach of unlike molecules leading to reductions in compressibility. Therefore, the breaking of the hydrogen bond association of the butanols in our mixtures, which produces positive  $\kappa_s^E$  values [8], is balanced by the existence of specific interactions, such as the solvation of the OH group by the  $\pi$ -electron cloud of aromatic rings [9] in the mixtures with chlorobenzene and bromobenzene and by the X–OH interaction (X is Cl or Br), to form a weak H-bond



Fig. 4. Excess isentropic compressibilities of bromobenzene(1) + a butanol(2) at T = 298.15 K:  $\triangle$ , 1-butanol;  $\square$ , 2-butanol;  $\blacktriangle$ , 2-methyl-1-propanol;  $\blacksquare$ , 2-methyl-2-propanol.

[9]. The solvation expanding why the values for the aromatic halohydrocarbon are smaller than those for the corresponding halocycloalkane. The results suggest that the X-OH interaction is somewhat stronger for the bromine atom than for the chlorine.

#### Acknowledgements

The authors are grateful for financial assistance from Universidad de Zaragoza (Proyecto UZ 96-232-47). M. Domínguez gratefully acknowledges support by Gobierno de Navarra. P. Cea gratefully acknowledges support by Gobierno de la Rioja.

### References

 C. Lafuente, J. Pardo, J. Santafé, M.C. López, F.M. Royo and J.S. Urieta, J. Chem Thermodyn., 25 (1993) 1403.

- [2] J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, Techniques of Chemistry, Vol. 2, Wiley-Interscience, New York, 4th edn., 1986.
- [3] G.C. Benson and O.J. Kiyohara, J. Chem Thermodyn., 11 (1979) 1061.
- [4] V.V. Diky, G.J. Kabo, A.A. Kozyro, A.P. Krasulin and V.M. Sevruk, J. Chem Thermodyn., 27 (1994) 1001.
- [5] Handbook of Chemistry and Physics, 73th edn., CRC Press, Boca Ratón, FL, 1992.
- [6] I. Shehatta, Thermochim. Acta, 213 (1993) 1.
- [7] R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61 (1965) 2102.
- [8] B. Jacobson, Ark. Kem., 2 (1950) 177.
- [9] R.H. Stokes, Chem. Soc. Rev., 11 (1982) 257.